Disini, kamu akan belajar tentang Koordinat Kutub melalui video yang dibawakan oleh Bapak Anton Wardaya. Kamu akan diajak untuk memahami materi hingga metode menyelesaikan soal. Selain itu, kamu juga akan mendapatkan latihan soal interaktif dalam 3 tingkat kesulitan (mudah, sedang, sukar).
MengkonversiKoordinat Kartesius ke Koordinat Kutub atau Sebaliknya • Jika pada koordinat kartesius titik P( x, y ) diketahui, maka koordinat kutub ( ) P r , θ o dapat ditentukan dengan menggunakan rumus sebagai berikut : r = x2 + y2 tan θ o = • y y ⇔ θ o = arctan x x ( Jika pada koordinat kutub titik P r , θ o ) diketahui, maka koordinat kartesius titik P( x, y ) dapat ditentukan dengan menggunakan rumus sebagai berikut : y ⇔ y = r. sin θ o r x cos θ o = ⇔ x = r. cos θ o r
soalpilihan ganda koordinat kartesius kelas 8 beserta, koordinat kutub dan koordinat cartesius pada trigonometri, b koordinat kartesius dan kutub slideshare, koordinat kartesius pengertian sistem diagram dan, cara mencari titik tengah ruas garis 9 langkah dengan, contoh soal dan pembahasan sistem koordinat garis dan, sistem koordinat geometri
Materimatematika wajib kelas 10. KOORDINAT KUTUB DAN KOORDINAT KARTESIUS. Sistem koordinat polar (sistem koordinat kutub) dalam matematika adalah suatu sistem koordinat 2-dimensi di mana setiap titik pada bidang ditentukan dengan jarak dari suatu titik yang telah ditetapkan dan suatu sudut dari suatu arah yang telah ditetapkan.
Jadikoordinat kartesius titik A (√3, 1) 2. Tentukan Koordinat kartesiusnya, jika koordinat kutubnya B (4,1200)! Jawab: B (4,1200) r = 4 y=r.Sin α=4.Sin 〖120〗^0=4.1/2 √3=2√3. α = 1200 x=r.Cos α=4.Cos 〖120〗^0=4.- 1/2= -2. Jadi koordinat kartesius titik B (- 2, 2√3 ) Koordinat Kartesius ⇒ Koordinat Kutub.
Vay Tiền Nhanh Chỉ Cần Cmnd Nợ Xấu. Blog Koma - Koordinat suatu titik dapat disajikan dalam bentuk koordinat kutub dan koordinat cartesius. Koordinat kutub sangat berguna salah satunya dalam ilmu astronomi. Koordinat kutub juga bisa digunakan untuk membuktikan rumus identitas trigonometri, serta rumus jumlah dan selisih sudut perbandingan trigonometri. Untuk memudahkan mempelajari materi koordinat kutub dan koordinat cartesius , sebaiknya kita pelajari dulu materi "Ukuran Sudut Derajat, Radian, dan Putaran", "Perbandingan Trigonometri pada Segitiga Siku-Siku", "Nilai Perbandingan Trigonometri di Berbagai Kuadran", dan "Perbandingan Trigonometri Sudut-sudut Berelasi". Hubungan koordinat kutub dan koordinat cartesius Koordinat kutub merupakan koordinat yang ada pada cartesius yang terletak pada suatu lingkaran $ x^2 + y^2 = r^2 \, $ , sehingga koordinat kutub ditulis berdasarkan jari-jari lingkaran $r$ dan sudut yang dibentuk terhadap sumbu X positif. Misalkan koordinat cartesius titik A adalah $x,y$, dan koordinat kutub titik A adalah $r, \alpha$, hubungan kedua titik adalah $ x = r \cos \alpha , \, $ dan $ \, y = r \sin \alpha $ . *. Berikut ilustrasi gambarnya $\clubsuit $ Langkah-langkah mengubah koordinat menjadi koordinat cartesius Langsung gunakan hubungan $ x = r \cos \alpha , \, $ dan $ \, y = r \sin \alpha $ $ \clubsuit $ Langkah-langkah mengubah koordinat cartesius menjadi koordinat kutub i. Menentukan jari-jari $r$ dengan pythagoras $ \, r^2 = x^2+y^2 $ ii. Menentukan besar sudut dengan salah satu rumus $ \sin \alpha = \frac{y}{r} \, $ atau $ \cos \alpha = \frac{x}{r}, \, $ atau $ \tan \alpha = \frac{y}{x} $ iii. Untuk kuadrannya, ada empat kemungkinan 1. $ x \, $ positif dan $ y \, $ positif , ada di kuadran I, 2. $ x \, $ negatif dan $ y \, $ positif , ada di kuadran II, 3. $ x \, $ negatif dan $ y \, $ negatif , ada di kuadran III, 4. $ x \, $ positif dan $ y \, $ negatif , ada di kuadran IV Contoh 1. Nyatakan koordinat kutub titik A$8,30^\circ $ ke dalam koordinat cartesius! Penyelesaian *. Diketahui titik $ A r , \alpha = 8,30^\circ $ artinya $ r = 8 \, $ dan $ \alpha = 30^\circ $ *. Menentukan koordinat cartesiusnya $ x = r \cos \alpha = 8 \cos 30^\circ = 8 . \frac{1}{2}\sqrt{3} = 4\sqrt{3} $ $ y = r \sin \alpha = 8 \sin 30^\circ = 8 . \frac{1}{2} = 4 $ Jadi, koordinat cartesiusnya adalah $ A4\sqrt{3}, 4 $ 2. Nyatakan koordinat cartesisu berikut kedalam koordinat kutub a. titik B$ 3, 3\sqrt{3} $ b. titik C$ -\sqrt{3}, 1$ Penyelesaian a. titik B$ 3, 3\sqrt{3} $ artinya $ x = 3 , \, $ dan $ \, y = 3\sqrt{3} $ *. Menentukan jari-jari $r$ $ r = \sqrt{x^2 + y^2 } = \sqrt{3^2 + 3\sqrt{3}^2 } = \sqrt{9 + 27 } = \sqrt{36} = 6 $ *. Menentukan sudut dengan rumus $ \cos \alpha = \frac{x}{r} $ $ \cos \alpha = \frac{x}{r} \rightarrow \cos \alpha = \frac{3}{6} \rightarrow \cos \alpha = \frac{1}{2} \rightarrow \alpha = 60^\circ $ Karena nilai $ x \, $ positif dan $ y \, $ positif, maka titik B ada di kuadran I dengan sudut $ 60^\circ $ Jadi, koordinat kutubnya adalah $ B 6, 60^\circ $ . b. titik C$ -\sqrt{3}, 1$ artinya $ x = -\sqrt{3} , \, $ dan $ \, y = 1 $ *. Menentukan jari-jari $r$ $ r = \sqrt{x^2 + y^2 } = \sqrt{-\sqrt{3}^2 + 1^2 } = \sqrt{3 + 1 } = \sqrt{4} = 2 $ *. Menentukan sudut dengan rumus $ \sin \alpha = \frac{y}{r} $ $ \sin \alpha = \frac{y}{r} \rightarrow \sin \alpha = \frac{1}{2} \rightarrow \alpha = 30^\circ $ Karena nilai $ x \, $ negatif dan $ y \, $ positif, maka titik C ada di kuadran II , Sehingga sudutnya $ 180^\circ - 30^\circ = 150^\circ $ Jadi, koordinat kutubnya adalah $ C 2, 150^\circ $ . Jarak dua titik koordinat kutub Untuk menghitung jarak dua titik koordinat kutub, caranya menggunakan jarak dua titik pada koordinat cartesius. Artinya kita harus mengubah dulu koordinat kutub menjadi koordinat cartesius. Untuk jarak dua titik koordinat cartesius, silahkan baca materi "Jarak Dua Titik dan Titik ke Garis". Menentukan jarak titik A$r_1, \theta _1$ dan titik B$r_2, \theta _2$ , *. Koordinat cartesiusnya adalah $ Ar_1, \theta _1 \rightarrow x_1 = r_1 \cos \theta _1 , \, y_1 = r_1 \sin \theta _1 \rightarrow Ar_1 \cos \theta _1,r_1 \sin \theta _1 $ $ Br_2, \theta _2 \rightarrow x_2 = r_2 \cos \theta _2 , \, y_2 = r_2 \sin \theta _2 \rightarrow Ar_2 \cos \theta _2,r_2 \sin \theta _2 $ *. Jarak titik A$x_1, y_1$ dan titik B$x_2,y_2$ $ \begin{align} \text{jarak } & = \sqrt{x_2-x_1^2 + y_2 - y_1^2 } \\ & = \sqrt{r_2 \cos \theta _2- r_1 \cos \theta _1^2 + r_2 \sin \theta _2 - r_1 \sin \theta _1^2 } \\ & = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \end{align} $ Sehingga jarak titik A$r_1, \theta _1$ dan titik B$r_2, \theta _2$ adalah $ \begin{align} \text{jarak } = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \end{align} $ Contoh 3. Tentukan jarak titik A$3,160^\circ $ dan titik B$4, 100^\circ$! Penyelesaian *. Diketahui titik-titik $ Ar_1, \theta _1 = 3,160^\circ \, $ dan $ Br_2, \theta _2 = 4, 100^\circ $ *. Jarak kedua titik adalah $ \begin{align} \text{jarak } & = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \\ & = \sqrt{ 3^2 + 4^2 - \cos 160^\circ - 100^\circ } \\ & = \sqrt{ 9 + 16 - 24. \cos 60^\circ } \\ & = \sqrt{ 25 - 24. \frac{1}{2} } \\ & = \sqrt{ 25 - 12 } \\ & = \sqrt{ 13 } \end{align} $ Jadi, jarak kedua titik adalah $ \sqrt{ 13 } \, $ satuan panjang. Pembuktian rumus jarak dua titik koordinat kutub *. Gunakan beberapa persamaan identitas trigonometri $ \sin ^2 A + \cos ^2 A = 1 $ Rumus selisih sudut $ \cos A - B = \cos A \cos B + \sin A \sin B $ *. Pembuktian rumusnya $ \begin{align} \text{jarak } & = \sqrt{x_2-x_1^2 + y_2 - y_1^2 } \\ \text{jarak }^2 & = x_2-x_1^2 + y_2 - y_1^2 \\ \text{jarak }^2 & = r_2 \cos \theta _2- r_1 \cos \theta _1^2 + r_2 \sin \theta _2 - r_1 \sin \theta _1^2 \\ \text{jarak }^2 & = r_2 ^2 \cos ^2 \theta _2 - 2r_1r_2 \cos \theta _2 \cos \theta _1 + r_1^2 \cos ^2 \theta _1 \\ & + r_2 ^2 \sin ^2 \theta _2 - 2r_1r_2 \sin \theta _2 \sin \theta _1 + r_1^2 \sin ^2 \theta _1 \\ \text{jarak }^2 & = r_2 ^2 \sin ^2 \theta _2 + \cos ^2 \theta _2 + r_1 ^2 \sin ^2 \theta _1 + \cos ^2 \theta _1 \\ & - 2r_1r_2 \cos \theta _2 \cos \theta _1 + \sin \theta _2 \sin \theta _1 \\ \text{jarak }^2 & = r_2 ^2 . 1 + r_1 ^2 . 1 - 2r_1r_2 \cos \theta _2 - \theta _1 \\ \text{jarak }^2 & = r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 \\ \text{jarak } & = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \end{align} $ Jadi, jaraknya adalah $ \begin{align} \text{jarak } = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \end{align} $
Dalam pelajaran matematika, ada materi mengenai koordinat yang banyak manfaatnya untuk kehidupan sehari-hari. Nah, dalam teorinya terdapat koordinat cartesius dan koordinat kutub yang bisa saling dikonversikan. Berikut ini penjelasan mengenai koordinat cartesius dan koordinat kutub serta cara dan Manfaat Koordinat CartesiusKoordinat cartesius merupakan suatu titik yang digambar pada sumbu X dan sumbu Y yang biasanya ditulis dengan Px,y. Istilah cartesius sendiri ditemukan oleh ahli matematika dari Perancis yang bernama Rene Descartes. Hasil penemuannya inilah gabungan antara aljabar dan geometri yang kemudian berkembang menjadi ilmu geometri analitik, kalkulus, dan koordinat cartesius juga bisa digunakan pada dimensi lebih tinggi, misalnya 3 dimensi yang menggunakan sumbu x, y, dan z. Jika pada 2 dimensi digunakan sumbu x dan y, maka sumbu z terletak saling tegak lurus dengan sumbu x dan dari koordinat cartesius sendiri banyak digunakan untuk kehidupan sehari-hari. Biasanya koordinat cartesius digunakan pada gambar denah atau peta, sehingga dapat memudahkan dalam mencari sebuah daerah. Selain itu koordinat cartesius juga digunakan dalam bidang penerbangan agar pesawat tidak saling bertabrakan dengan pesawat yang jugaskala pengertian rumus serta cara menggunakankedudukan titik garis dan bidangMeter lari, meter persegi, dan meter kubikPengertian dan Manfaat Koordinat KutubKoordinat kutub atau koordinat polar merupakan sistem koordinat 2 dimensi, dimana titik bidang ditentukan dari jarak titik yang sudah ditetapkan dan besar sudut ditentukan dari arah yang sudah abad ke-8 M, penggunaan koordinat kutub ini dikembangkan untuk menghitung arah dan jarak kiblat dari seluruh penjuru cartesius dan koordinat kutub serta cara konversi bisa dilakukan dengan menggunakan rumus. Sebelum Anda mengetahui rumus konversi koordinat cartesius ke dalam koordinat kutub ataupun sebaliknya, ada baiknya Anda mengetahui hubungan koordinat cartesius dan koordinat kutub dengan melihat gambar gambar tersebut dapat dilihat bahwa koordinat cartesius ditujukan titik P x,y dan koordinat kutub Pr,ϑ dan bisa ditentukan dengan rumusJadi, jika diketahui koordinat cartesius Px,y, maka koordinat kutub bisa ditentukan dengan rumusSedangkan untuk mengkonversi koordinat kutub ke dalam koordinat cartesius digunakan rumusJadi, jika diketahui koordinat cartesius Pr,ϑ, maka koordinat kutubnya dapat dinyatakan dengan rumusContoh Soal Konversi Koordinat Cartesius dan Koordinat KutubJika diketahui titik-titik koordinat sebagai berikutP 4,4P 6,1200Ubahlah menjadi koordinat cartesius atau koordinat kutub!JawabDiketahui koordinat cartesius P 4,4, maka digunakan rumus dan perhitungannya sebagai berikutJadi, koordinat kutub dari P 4,4 adalahDiketahui koordinat kutub P 6,1200, maka perhitungannya adalahJadi, koordinat cartesius dari P 6,1200 adalahBaca JugaCara Konversi Sudut ke Radian dan SebaliknyaKonsep Pemetaan Jenis-Jenis Fungsi dan Sifat-Sifat FungsiPengertian, Jenis, Gambar Vektor dan NotasinyaNah, itulah penjelasan mengenai koordinat cartesius dan koordinat kutub serta cara konversi. Semoga informasi di atas bermanfaat bagi Anda. Selamat belajar.
Masih sering bingung dengan materi koordinat kutub? Yuk, simak penjelasan lengkapnya lewat video yang ada di sini. Setelahnya, kamu juga bisa mengerjakan latihan soal yang telah disediakan untuk mengasah kemampuan sini, kamu akan belajar tentang Koordinat Kutub melalui video yang dibawakan oleh Bapak Anton Wardaya. Kamu akan diajak untuk memahami materi hingga metode menyelesaikan soal. Selain itu, kamu juga akan mendapatkan latihan soal interaktif dalam 3 tingkat kesulitan mudah, sedang, sukar. Tentunya menarik, bukan? Penjelasan yang didapatkan bisa dipraktikkan secara langsung. Sekarang, kamu bisa mulai belajar dengan 2 video dan 3 set latihan soal yang ada di halaman ini. Apabila materi ini berguna, bagikan ke teman atau rekan kamu supaya mereka juga mendapatkan manfaatnya. Kamu dapat download modul & contoh soal serta kumpulan latihan soal lengkap dalam bentuk pdf pada list dibawah ini Kumpulan Soal Mudah, Sedang & Sukar
y Koordinat KartesiusdanKoordinat Kutub O xKOORDINAT KARTESIUS Koordinat kartesiusadalah koordinat suatu titik yang digambar pada sumbu x dan sumbu y bidang kartesius, terdiri dari absis nilai x dan ordinat nilai y, ditulis Px,y y xp,yp P yp xp O xKOORDINAT KUTUB Koordinat kutubadalah koordiant yang digambar pada sumbu x dan sumbu y, terdiri dari nilai r jarak titik dengan pangkal koordinat dan θ sudut XOP, ditulis Pr, θ. y r,θ P r θ O xKonversi KOORDINAT KARTESIUS ke KOORDINAT KUTUB atau sebaliknya y y Pxp,yp Pr,θ yp r θ xp O O x x Pr,θ y y r θ Koord kutub ke koord kartesius x Koord kartesius ke koord kutub O xy 4,4 P 4 r θ O x 4 Contoh 1 Tentukan koordianat kutub dari P4,4 ! Pembahasan Diketahui P4,4 Ditanya Tentukan koordinat kutubnya! Jawab Dari P4,4 maka Jadi, koordinat kutubnyaContoh 2 T6,300 y 6 300 x O Tentukan koordianat kartesius dari Pembahasan Diketahui Ditanya Tentukan koordinat kutubnya! Jawab Dari maka Jadi, koordinat kartesiusnyaSoal 1 Gambarlah dalam koordinat kertesius dari A10,0, kemudian nyatakan A dalam koordiant kutub! 2 Gambarlah dalam koordinat kutub dari B4,300, kemudian nyatakan B dalam koordiant kartesius!
materi koordinat kartesius dan koordinat kutub